Ab initio treatment of the chemical reaction precursor complex Br(2P)-HCN. 1. Adiabatic and diabatic potential surfaces.

نویسندگان

  • Anna V Fishchuk
  • Jeremy M Merritt
  • Ad van der Avoird
چکیده

The three adiabatic potential surfaces of the Br(2P)-HCN complex that correlate to the 2P ground state of the Br atom were calculated ab initio. With the aid of a geometry-dependent diabatic mixing angle, also calculated ab initio, these adiabatic potential surfaces were transformed into a set of four diabatic potential surfaces required to define the full 3 x 3 matrix of diabatic potentials. Each of these diabatic potential surfaces was expanded in terms of the appropriate spherical harmonics in the atom-linear molecule Jacobi angle theta. The dependence of the expansion coefficients on the distance R between Br and the HCN center of mass and on the CH bond length was fit to an analytic form. For HCN in its equilibrium geometry, the global minimum with De = 800.4 cm(-1) and Re = 6.908a0 corresponds to a linear Br-NCH geometry, with an electronic ground state of Sigma symmetry. A local minimum with De = 415.1 cm-1, Re = 8.730a0, and a twofold degenerate Pi ground state is found for the linear Br-HCN geometry. The binding energy, De, depends strongly on the CH bond length for the Br-HCN complex and much less strongly for the Br-NCH complex, with a longer CH bond giving stronger binding for both complexes. Spin-orbit coupling was included and diabatic states were constructed that correlate to the ground 2P3/2 and excited 2P1/2 spin-orbit states of the Br atom. For the ground spin-orbit state with electronic angular momentum j = (3/2) the minimum in the potential for projection quantum number omega = +/-(3/2) coincides with the local minimum for linear Br-HCN of the spin-free case. The minimum in the potential for projection quantum number omega = +/-(1/2) occurs for linear Br-NCH but is considerably less deep than the global minimum of the spin-free case. According to the lowest spin-orbit coupling included adiabatic potential the two linear isomers, Br-NCH and Br-HCN, are about equally stable. In the subsequent paper, we use these potentials in calculations of the rovibronic states of the Br-HCN complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ab initio treatment of the chemical reaction precursor complex Br(2P)-HCN. 2. Bound-state calculations and infrared spectra.

Rovibronic energy levels and properties of the Br(2P)-HCN complex were obtained from three-dimensional calculations, with HCN kept linear and the CN bond frozen. All diabatic states that correlate to the 2P3/2 and 2P1/2 states of the Br atom were included and spin-orbit coupling was taken into account. The 3 x 3 matrix of diabatic potential surfaces was taken from the preceding paper (paper 1)....

متن کامل

Ab initio treatment of the chemical reaction precursor complex Cl(2P)-HF. 1. Three-dimensional diabatic potential energy surfaces.

The three adiabatic potential surfaces of the Cl(2P)-HF complex that correlate with the 2P ground state of the Cl atom were calculated with the ab initio RCCSD(T) method (partially spin-restricted coupled cluster theory including single and double excitations and perturbative correction for the triples). With the aid of a geometry-dependent diabatic mixing angle, calculated by the complete acti...

متن کامل

Coupled diabatic potential energy surfaces for studying the nonadiabatic dynamics at conical intersections in angular resolved photodetachment simulations of OHF--->OHF+e-.

An energy-based method is proposed for the diabatization of the OH(2Pi)+F(2P)-->O(3P)+HF(1Sigma+) reaction. It is demonstrated that the diabatic representation obtained is regularized, i.e., the residual derivative couplings do not present singularities at the conical intersections appearing along the reaction path. This method only requires the knowledge of the 1,2 3A" and 1 3A' eigenvalues an...

متن کامل

Direct calculation of coupled diabatic potential-energy surfaces for ammonia and mapping of a four-dimensional conical intersection seam.

We used multiconfiguration quasidegenerate perturbation theory and the fourfold-way direct diabatization scheme to calculate ab initio potential-energy surfaces at 3600 nuclear geometries of NH3. The calculations yield the adiabatic and diabatic potential-energy surfaces for the ground and first electronically excited singlet states and also the diabatic coupling surfaces. The diabatic surfaces...

متن کامل

On the construction of diabatic and adiabatic potential energy surfaces based on ab initio valence bond theory.

A theoretical model is presented for deriving effective diabatic states based on ab initio valence bond self-consistent field (VBSCF) theory by reducing the multiconfigurational VB Hamiltonian into an effective two-state model. We describe two computational approaches for the optimization of the effective diabatic configurations, resulting in two ways of interpreting such effective diabatic sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 111 31  شماره 

صفحات  -

تاریخ انتشار 2007